Open source all-iron battery 2.0

https://www.youtube.com/watch?v=h-dNBP-l2ro&t=0s
Check link for separator design

https://www.youtube.com/watch?v=P8tt-8ujv9U
Check link for NaC salt battery design

salt battery.png

https://www.youtube.com/watch?v=-ioxjGs70TM
Another option to look at

Graphical abstract

Graphical abstract f0035

Abstract

In this work we present significant improvements to the open-source all-iron battery. We show higher power density and simpler fabrication. We also show a more reproducible procedure for preparing the electrolytes. The results are a highly rechargeable electrochemical cell based on iron, chloride, sulfate, and potassium ions in water at near-neutral pH. The cell is stable for thousands of cycles. It displays modest energy density consistent with the previous all-iron battery. The current is improved by a factor of 10 to a practical level of 500 mA/L and is able to deliver a maximal power of 250 mW/L. While this is modest performance compared to commercial rechargeable batteries, its low cost, simple synthesis, and safe manufacturing may make it suitable for storing renewable energy.

Keywords

  1. Battery
  2. Electrochemical cell
  3. Rechargeable
  4. Power
  5. Energy
  6. Renewable

Specifications table

Hardware name Open source Iron Battery 2.0
Subject area • Chemistry and Biochemistry
Hardware type Electrical engineering and computer science
Open Source License CC BY-NC-ND 4.0
Cost of Hardware $4.58 - $13.74 for cells of 8 ml each; Cost of set-up $ 400 (to build 50 cells of 8 ml each)
Source File Repository https://doi.org/10.17605/OSF.IO/YV2E6

1 Hardware in context

Inexpensive, safe energy storage has many applications. Renewable energy can only displace a percentage of fossil fuel energy unless it can be efficiently and cost-effectively stored [1]

Budischak, C. ∙ Sewell, De A. ∙ Thomson, H. ...

Cost-minimized combinations of wind power, solar power and electrochemical storage, powering the grid up to 99.9% of the time

J. Power Sources. 2013; 225:60-7430080-8/# "Close info")

. Lithium-ion batteries have emerged as the dominant energy storage system for mobile applications, but they have safety [2]

Liu, B. ∙ Jia, Y. ∙ Yuan, C. ...

Safety issues and mechanisms of lithium-ion battery cell upon mechanical abusive loading: A review

Energy Storage Mater. 2020; 24:85-11230080-8/# "Close info")

and cost issues [3]

Naumann, M. ∙ Karl, R.C. ∙ Truong, C.N. ...

Lithium-ion battery cost analysis in PV-household application

Energy Procedia. 2015; 73:37-4730080-8/# "Close info")

. For stationary applications, it may be advantageous to move to a cheaper, safer, but lower energy density chemistry. We demonstrated a small-scale all-iron battery [4]

Yensen, N. ∙ Allen, P.B.

Open source all-iron battery for renewable energy storage

HardwareX. 2019; 6:e0007230080-8/# "Close info")

. This cell was highly rechargeable with modest but useful energy density suitable only for low-power applications. We here report an improved version of this chemistry with similar energy density and much higher power density as well as a more convenient form factor.

Several all-iron batteries have been demonstrated in the literature and at large scale for commercial applications. For a recent summary, see Anarghya et al. [5]

Dinesh, A. ∙ Olivera, S. ∙ Venkatesh, K. ...

Iron-based flow batteries to store renewable energies

Environ. Chem. Lett. 2018; 16:683-69430080-8/# "Close info")

. Such batteries are often implemented as flow batteries [6,7]

Gong, K.e. ∙ Xu, F. ∙ Grunewald, J.B. ...

All-soluble all-iron aqueous redox-flow battery

ACS Energy Lett. 2016; 1:89-93

Manohar, A.K. ∙ Kim, K.M. ∙ Plichta, E. ...

A high efficiency iron-chloride redox flow battery for large-scale energy storage

J. Electrochem. Soc. 2016; 163:A5118-A512530080-8/# "Close info")

. Flow batteries have the advantage of decoupling the energy capacity (determined by the size of the electrolyte tank) from the power capacity (determined by the size of the flow cell). This comes at the cost of relatively complex plumbing and pumps.

The all-iron battery presented here is a conventional battery and not a flow battery. Although the chemical reactions that move and store electrons are the same (i.e., the oxidation of Fe and the reduction of Fe3+), the physical design is much simpler. Rather than using a high-performance flow cell to achieve practical power levels, our approach is to modify the anode and cathode materials to achieve useful energy and power performance.

2 Hardware description

We describe a design for an energy storage battery with an iron-based anode and cathode. The overall strategy is shown in Fig. 1. Iron metal is oxidized to ferrous iron at the anode while ferric iron is reduced to ferrous iron at the cathode allowing electrons to flow. This system provides high rechargeability and customizability, but the power and energy density are low compared to commercial batteries. We also describe the simple synthesis of a suitable separator membrane made from cellulose acetate impregnated paper. This separator keeps the anode and cathode chemistry separate but allows ion transfer. The area of the polymer sheet determines the maximum current. For more power, the battery should be thin with a large surface area. If less power and more energy capacity is needed, the battery can be thicker with a smaller separator membrane area (i.e., a thicker acrylic plastic or multiple layers can be used).

Fig. 1 Overall battery design and function. (A) Images show the three active forms of iron. (B) A schematic show how the overall battery construction and current flow.

Our primary improvement to the original open-source all-iron battery is to increase the current density. The original formulation [4]

Yensen, N. ∙ Allen, P.B.

Open source all-iron battery for renewable energy storage

HardwareX. 2019; 6:e0007230080-8/# "Close info")

was a mix of iron chloride and potassium sulfate adjusted to pH 7.5 with sodium hydroxide. Raising the pH causes a solid to precipitate. The conductivity of the precipitated particles is low and the concentration of iron ions in solution is also low. This limited the battery’s maximal electrical current. We determined that the maximal discharge and charge current could be significantly increased by adding conductive carbon. By decreasing the distance between the carbon electron conductor (originally, carbon felt) and the iron precipitate, we were able to increase power density. Adding ketjen black [Conductive Carbon] to the anode and cathode pastes allows electrons to migrate to within a much shorter distance of the active material through a conductive matrix (see Fig. 2) We added a range of concentrations of Ketjen black [conductive carbon] to the precipitate and determined that 4% carbon by mass was sufficient to reach near-optimal performance. More than 4% carbon means that there is less room for iron and so higher concentrations are not recommended.

Fig. 2 Ketjen black conductive particles improve battery performance. (A) Schematic shows how electrons diffuse through electrolyte. (B) Schematic shows how hypothetical effect of conductive carbon to shorten diffusion distance. (C) Graph of Sustained current vs % (w/w) of conductive carbon.

As a secondary improvement we sought to simplify the original iron battery chemistry. In the original chemistry, the iron salt solutions contained dissolved iron, sodium, potassium, chloride and sulfate ions. This is shown at left, using the previous best membrane. The result was a stable chemistry with a large voltage drop (Fig. 3, far left). We replaced the sodium polyacrylate membrane with an improved membrane (cellulose acetate drop cast on printing paper). This improved the power density resulting in less internal resistance and a smaller voltage drop during discharge. We also systematically eliminated each component to determine which were necessary. Sulfate, chloride and potassium ions are necessary to generate a high performance, rechargeable cell. Only the removal of the sodium ions was tolerated with high performance (see Fig. 3, No Na+). Eliminating any of the other ions resulted in cell degradation and a changing charge–discharge profile. The newest formulation includes iron chloride and potassium sulfate precipitated with potassium hydroxide. Relative to the original chemistry, the new formulation is slightly simpler. However, depending on availability of materials, other formulations are possible (e.g., the use of ammonium iron sulfate) so long as the appropriate ions are dissolved in solution prior to precipitation.

Fig. 3 Optimization of cell chemistry includes cyclic potentiograms of each of four formulations with original iron chemistry (Iron Battery 1.0, at far left). In each case one ionic component (Na+, K+, Cl, or SO42–) was eliminated. The graphs show potential as a function of time during the first 10 and last 10 of 500 total cycles. Consistency in the charge-discharge profiles indicates stability.

This hardware could be useful in any context where a safe, inexpensive battery would be an advantage. The ability to use an open source energy storage solution could complement open source hardware projects in many fields:

Storage of renewable energy from an open source wind turbine [8]

Bartmann, D. ∙ Fink, D.

Homebrew wind power: A hands-on guide to harnessing the wind

Buckville Publ. LLC. 2009;30080-8/# "Close info")

Storage of renewable energy from an open source solar farm [9]

Buitenhuis, A.J. ∙ Pearce, J.M.

Open-source development of solar photovoltaic technology

Energy Sustain. Develop. 2012; 16:379-38830080-8/# "Close info")

Open source environmental data loggers [10]

E.d. Baker Open source data logger for low-cost environmental monitoring BDJ 2 e1059 10.3897/BDJ.2.e1059.suppl230080-8/# "Close info")

Open source weather stations [11]

Netto, G.T. ∙ Arigony-Neto, J.

Open-source automatic weather station and electronic ablation station for measuring the impacts of climate change on glaciers

HardwareX. 2019; 5:e0005330080-8/# "Close info")

3 Design files

Design Files Summary:

Design file name File type Open source license Location of the file
Battery Design CAD file in .svg format CC BY-NC-ND 4.0 doi.org/https://doi.org//10.17605/OSF.IO/YV2E6

Battery Design: The design files are included online at https://doi.org/10.17605/OSF.IO/YV2E6. The specified design includes a cell with external dimensions of 165 mm × 85 mm × 5 mm and an internal active volume of 9.6 ml. The cell is assembled from four acrylic parts and held together by a combination of solvent welding, glue and machine screws.

4 Bill of materials

The following is for 3 cells containing 8 ml each of the electrolyte pastes.

DesignatorComponentNumber (per 3 cells of 8 ml each)Cost per 8 ml cell - USD ($)Cost per unit - USD ($)Total cost - USD ($)Source of materialsMaterial type
Fe Salt 1Ferrous Chloride (FeCl2)3.97 g$0.25
$1.11
$0.66
$0.19/g
$0.84/g
$0.50/g
$47.90
$21
$49.95
Alfa-Aesar (A16327)
CPLabSafety
Amazon (B00QG9I3SK)
Inorganic
Fe Salt 2Ferric Chloride (FeCl3)3.24 g$0.08
$0.04
$0.14
$0.08/g
$0.035/g
$0.13
$39.10
$17.60
$12.95
Alfa Aesar (A16231)
Amazon (B00DYOA85Q)ebay
Inorganic
SaltPotassium Sulfate (K2SO4)6.97 g$0.08
$0.23
$0.034/g
$0.10/g
$34.40
$5.09
Alfa Aesar (A13975)
ebay
Inorganic
BasePotassium Hydroxide (KOH)8.42 g$0.13
$0.42
$0.28
$0.047/g
$0.15
$0.10/g
$23.70
$15.31
$5.09
Alfa Aesar (A18854)
Amazon (B07JVVTP56)
ebay
Inorganic
Fe MetalSteel Wool (Fe)0.44 g$0.01$0.02/g$3.78Amazon/Walmart (B074MDTWQR)Metal
 Cellulose Acetate0.45 g$0.07$0.48/g$11.92Fisher-Scientific (AC177780250)Organic
 Nafion45 µL$0.04$2.46/ml$61.50Alfa Aesar (42118)Organic
 Ethylene Glycol67.5 µL$0.01$0.074/g$18.60Alfa Aesar (A11591)Organic
 Printing Paper1 pcs$0.01$0.013/sheet$6.44Amazon (B0050MRBA0)Composit
Conductive CarbonKetjen Black EC-600JD1.20 g$0.43
$0.52
$1.07/gm
$1.31/gm
$60
$65.50
Ebay
Ebay
Inorganic
HousingArcylic sheet6 pcs (5″ × 7″)
Or, 1700 cm2
$4.40
$1.7
$2.20/pcs
$0.003/cm2
$21.99
~$30
Amazon (B081B15HL4)
Local Hardware Store
Composite
GlueClear Seal~6 ml$0.05$0.025/ml$3.97Amazon/Walmart (B001T8UDOU)Composite
Elec 1Graphite sheet450 cm2$0.15
$1.12
$0.001/cm2$0.008/cm2$11
$23
Alibaba
Amazon (B07K8Y4269)
Semi-conductor
 Methylene Chloride6 ml$0.11$0.057/ml$28.40Alfa Aesar (L13089)Organic
 Copper tape30 cm2~$0.50$2.63WalmartMetal
 Nuts and bolts30 pcs$5
$1
$0.5/pc
$0.1/pc
$15Walmart
Local hardware store
Metal/Alloy/Plastics
Totals (Lowest) $4.58/Cell (8 ml)
Totals (Highest) $13.74/ Cell (8 ml)

*Above mentioned prices are exclusive of local tax and shipping.

5 Build instructions

Short build instructions are as follows (detailed build instructions are included as Supplemental material). The cell housing was laser-cut from acrylic plastic (using a suitable CO2 laser cutter such as our BossLaser 80 W or acquired from a commercial service like Ponoko). The design can be adjusted to a wide range of dimensions. The CAD designs for the laser cut acrylic plastic (PMMA) are shown in Fig. 4A. Two copies of each part should be made. The internal enclosed volume determines the energy storage capacity. The surface area determines the power.

Fig. 4 Cell design and construction. (A) CAD design of cell housing. (B) Schematic of cell assembly. (C) Photograph of image of materials and selected steps of cell assembly.

Graphite foil [Elec1] was cut to shape with tabs for making an electrical connection with alligator clips. The graphite foil was glued to a flat acrylic sheet using clear seal [Glue]. A second acrylic sheet was cut with a central hole slightly smaller than the graphite foil and glued to the first. The design leaves an open cavity for active material (i.e., either anode electrolyte paste or cathode electrolyte paste) as illustrated in Fig. 4B. A separator membrane was prepared by dissolving cellulose acetate in acetone, applying the solution to paper along with an optional small volume of Nafion, and allowing to evaporate (see Fig. S.2).

Electrolyte paste was prepared by dissolving iron chloride (ferric for cathode and ferrous for anode) in water at the appropriate proportions. To this, a measured quantity of potassium hydroxide solution was added to reach pH 7.5. To the resulting precipitate, ball-milled ketjen black [conductive Carbon] was added to reach 4%. The anode cavity was filled with finely divided steel wool [Fe Metal] and then packed with anode paste. The separator membrane was placed over the anode cavity. The cathode cavity was filled with cathode paste, then the cathode assembly was pressed over the separator membrane. The full assembly was then fastened together with machine screws at the perimeter and sealed by solvent welding the acrylic plastic with methylene chloride. Copper tape was used to reinforce the graphite foil tabs which extend beyond the edge of the acrylic. As assembled, the cell is in the charged state and is ready to generate electrical current.

6 Operation instructions

Once the battery is assembled it can be discharged and charged like any battery or electrochemical cell. This can generate the necessary electric current for a given electronic device. For discharge, the battery can be used to power any direct current electrical device that draws less than the maximum current for the cell (4.5 mA for the 8 ml cell). Multiple cells can be wired together in series or in parallel to generate higher voltage or current. For charging, we recommend a constant, regulated charging voltage of 1.1 V per cell in series.

As one example application, we used a single cell with a “Joule thief” circuit to boost the voltage. This circuit converts the low voltage DC to AC and drives the AC voltage through a step-up transformer. The result is sufficient for a modest brightness LED (see Fig. 5). As an alternative, five such batteries could be wired in series. They could act as a storage reservoir for solar energy to operate a light at night. This battery may represent some advantages over lithium ion batteries including lower cost and lower environmental impact of production as well as low toxicity and high recyclability.

Fig. 5 Iron battery 2.0 and Joule thief power an LED. (A) Photograph shows open circuit (LED off). (B) Photograph shows closed circuit (illuminated LED).

The iron battery has significant internal resistance. Beyond its maximal current, the internal resistance results in a significantly lower operational voltage. The lower voltage reduces the available power. The maximal energy density for the 8 ml cell was 0.25 mW per ml. A battery should be designed and constructed with this limitation in mind. Depending on power requirements, a battery of the appropriate size will be needed.

During the preparation of reagents, there are several safety considerations. Potassium hydroxide is caustic and should not come into contact with skin. Ferric chloride is corrosive and strongly acidic and should not be allowed to come into contact with skin. Additionally, ferric chloride will degrade metals it contacts. Once the components are neutralized by mixing in the proper proportions, they are comparatively inert. When the cell is no longer needed, it can be considered non-hazardous waste (subject to local regulations). The plastic, neutral pH water, iron salts, and potassium salts are all non-hazardous waste (comparable to normal food and household waste).

7 Validation and characterization

The 8 ml version of the iron cell was tested for its total capacity and maximal power. The cell is shown in Fig. 6A. This cell contains 4 ml each of anode and cathode paste. It has a membrane of 48 cm2. To determine the total capacity, the cell was discharged at a constant current of 1 mA until the potential dropped to 75 mV as shown in Fig. 6B. The Total capacity on first discharge was 80 mAh. With 0.97 g of ferric iron acting as a cathode, we would expect a maximum of 160 mAh. Thus, we are accessing 50% of the iron in the cathode. After 1000 cycles, the capacity was re-measured and was 72 mAh, showing a loss of only 10%.

Fig. 6 Cell characterization. (A) Photograph of assembled cell. (B) Graph shows deep discharge before and after 1000 cycles. (C) Graph of power vs current shows maximal power.

To determine the maximal power, the 8 ml cell was discharged at a range of currents and the voltage was measured. The power was calculated at each condition by multiplying the current and voltage. The result was a graph of power as a function of current, as shown in Fig. 6C. The maximal power was ~ 2 mWatts or 0.25 mW/ml at 4.5 mA. This is significantly lower than typical commercial batteries, but nearly two orders of magnitude larger than our previous best.

Capabilities and limitations:

Voltage: Although the cell shows an open cell potential of 1.1 V, the voltage may drop as low as ~ 200 mV during high current discharge. This internal resistance reduces available power.

Volumetric Capacity: 10 Ah/L. This limits the battery to stationary applications.

Cycle stability: Stable for greater than 1000 cycles

Price: $60 per watt-hour for 8 ml cells (as built, including laser-cut housing)

Price: $0.36 per watt-hour for active materials at wholesale prices

Human and animal rights

This work did not use human or animal subjects.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A Supplementary data (1)

The following are the Supplementary data to this article:

References

Budischak, C. ∙ Sewell, De A. ∙ Thomson, H. ...

Cost-minimized combinations of wind power, solar power and electrochemical storage, powering the grid up to 99.9% of the time

J. Power Sources. 2013; 225:60-74

Liu, B. ∙ Jia, Y. ∙ Yuan, C. ...

Safety issues and mechanisms of lithium-ion battery cell upon mechanical abusive loading: A review

Energy Storage Mater. 2020; 24:85-112

Naumann, M. ∙ Karl, R.C. ∙ Truong, C.N. ...

Lithium-ion battery cost analysis in PV-household application

Energy Procedia. 2015; 73:37-47

Yensen, N. ∙ Allen, P.B.

Open source all-iron battery for renewable energy storage

HardwareX. 2019; 6:e00072

Dinesh, A. ∙ Olivera, S. ∙ Venkatesh, K. ...

Iron-based flow batteries to store renewable energies

Environ. Chem. Lett. 2018; 16:683-694

Gong, K.e. ∙ Xu, F. ∙ Grunewald, J.B. ...

All-soluble all-iron aqueous redox-flow battery

ACS Energy Lett. 2016; 1:89-93

Manohar, A.K. ∙ Kim, K.M. ∙ Plichta, E. ...

A high efficiency iron-chloride redox flow battery for large-scale energy storage

J. Electrochem. Soc. 2016; 163:A5118-A5125

Bartmann, D. ∙ Fink, D.

Homebrew wind power: A hands-on guide to harnessing the wind

Buckville Publ. LLC. 2009;

Buitenhuis, A.J. ∙ Pearce, J.M.

Open-source development of solar photovoltaic technology

Energy Sustain. Develop. 2012; 16:379-388

E.d. Baker Open source data logger for low-cost environmental monitoring BDJ 2 e1059 10.3897/BDJ.2.e1059.suppl2

Netto, G.T. ∙ Arigony-Neto, J.

Open-source automatic weather station and electronic ablation station for measuring the impacts of climate change on glaciers

HardwareX. 2019; 5:e00053

Figures (6)

Article metrics

Supplementary materials (1)

HardwareXOctober 15, 2024

HardwareX

Software ImpactsFebruary 22, 2024

SoftwareXMay 20, 2024

HardwareXJanuary 6, 2025

SoftwareXOctober 18, 2024

HardwareXAugust 21, 2024

HardwareXJune 19, 2024

HardwareXMarch 23, 2024

HardwareXJuly 30, 2024

HardwareXMarch 14, 2024

HardwareXMay 2, 2023

SoftwareXJuly 10, 2024

HardwareXFebruary 1, 2024

HardwareXJuly 9, 2024

HardwareXApril 6, 2024

HardwareXNovember 15, 2024

SoftwareXNovember 30, 2023

HardwareXMay 13, 2023

SoftwareXFebruary 12, 2023

HardwareXSeptember 7, 2023

SoftwareXJune 14, 2023

SoftwareXJuly 26, 2023

HardwareXDecember 7, 2023

Science TalksOctober 13, 2022

SoftwareXNovember 11, 2024

HardwareXJuly 7, 2023

SoftwareXDecember 5, 2024

HardwareXJuly 11, 2024

SoftwareXJanuary 18, 2023

HardwareXNovember 18, 2022

HardwareXAugust 4, 2023

HardwareXSeptember 5, 2024

HardwareXJanuary 10, 2025

SoftwareXSeptember 15, 2023

SoftwareXDecember 2, 2024

SoftwareXDecember 15, 2024

HardwareXJune 15, 2024

SoftwareXDecember 23, 2023

HardwareXJune 8, 2023

Show more